PMI Belgium University Contest

- This presentation is made by the five winners of the PMI Belgium University Contest, edition 2016.
- The winners have been nominated by a jury from PMI Belgium for the best group assignment for the course "Project Management" given by Mario Vanhoucke at the Faculty of Economics and Business Administration of Ghent University.
- More information on this contest can be found in the paper "PMI Belgium's recognition of young PM potential" published in the Journal of Modern Project Management (cf. http:// www.or-as.be/blog/jmpm_2014c).
- Congratulations to the winners!

Mario Vanhoucke

De Waalse Krook

Risk Assessment using the Fuzzy Set Theory

Ellen De Backer Rani Torrekens Laurine Van Buggenhout Mathilde Van Caeckenbergh Karen Verhaeghe

Course Project Management

Based on 3 parts:

- Baseline scheduling
- Risk analysis
- Project control

- Background information
- Project description
- Risk analysis
- Fuzzy Set Theory
- Fuzzy approach applied on De Krook
- Recommendations for the future
- Conclusion

- Background information
- Project description
- Risk analysis
- Fuzzy Set Theory
- Fuzzy approach applied on De Krook
- Recommendations for the future
- Conclusion

Project Description

Work Breakdown Structure

DE KROOK

- Background information
- Project description
- Risk analysis
- Fuzzy Set Theory
- Fuzzy approach applied on De Krook
- Recommendations for the future
- Conclusion

Risk Analysis Risk Assessment

RISK = PROBABILITY * IMPACT

Probability	Impact				
	Hardly noticable	Little Damage Damages narrow pieces of the project	Big Damage Damage important pieces of the project	Unacceptable Damage	Useless Make the project useless and will end the project immediately
Certain > 90% chance	High	High	Extreme	Extreme	Extreme
Likely 50-90% chance	Moderate	High	High	Extreme	Extreme
Moderate 10-50% chance	Low	Moderate	High	Extreme	Extreme
Unlikely 3-10% chance	Low	Low	Moderate	High	Extreme
Rare < 3% chance	Low	Low	Moderate	High	High

- Background information
- Project description
- Risk analysis
- Fuzzy Set Theory
- Fuzzy approach applied on De Krook
- Recommendations for the future
- Conclusion

Fuzzy Set Theory

- Based on the HRBS
- Cause and effect diagrams
- Qualitive risk assessment descriptions modeled mathematically

DE KROOK

• Nice overview of the overall impact of risk on your project

- Background information
- Project description
- Risk analysis
- Fuzzy Set Theory
- Fuzzy approach applied on De Krook
- Recommendations for the future
- Conclusion

Fuzzy approach applied on De Krook

Fuzzy approach applied on De Krook Step 1

Step 1: The fuzzy associative memories (FAMs)

Risk severity	Risk magnitude				
High (1.0) ¹	Medium	Medium	Medium High	High	High
Medium High (*) ¹	Low Medium	Medium	Medium	Medium High	High
Medium (0.5) ¹	Low Medium	Low Medium	Medium	Medium	Medium High
Low Medium (*) ¹	Low	Low Medium	Low Medium	Medium	Medium
Low (0.1) ¹	Low	Low	Low Medium	Low Medium	Medium
	Low (0.1) ¹	Low Medium (*) ¹	Medium (0.5) ¹	Medium High (*) ¹	High (1.0) ¹
	Risk likelihood				

Risk = probability * impact

Fuzzy approach applied on De Krook Step 2

Step 2: Assessment of the likelihood and severity

Risk	Severity (=V)	Likelihood (=L)	Magnitude (=E)		
Productivity					
Licence	High	High	High		
Archaeological catches	Low	Low	Low		
Weather	High	Medium	Medium High		
Access					
Quay wall	High	Medium High	High		
Province house	High	High	High		
Transport by water	High	Medium High	High		

 \rightarrow The value of the risk factor with the greatest effect (E= jE_{max}) determines total effect on the risk

Fuzzy approach applied on De Krook Step 3

Step 3: Compute the changes in the performance measurements of the work item by the individual risks

	Risk magnitude	Change in duration	Change in cost	Change in quality	Change in safety
Productivity	High	High	High	High	Low
	Medium	Medium	Medium	Medium	Very low
	Low	Low	Low	Low	Very low
Access	High	High	High	Medium	Medium
	Medium	Medium	Medium	Low	Low
	Low	Low	Low	Low	Low

Result

DE KROOK

- Background information
- Project description
- Risk analysis
- Fuzzy Set Theory
- Fuzzy approach applied on De Krook
- Recommendations for the future
- Conclusion

Recommendations future

• Expanding the scales

	Severity (S)			
Likelihood (L)	High impact level (1.0)	Medium impact level (0.5)	Low impact level (0.1)	
Highly likely (1.0)	1.0	0.5	0.1	
Likely (0.5)	0.5	0.25	0.05	
Less Likely (0.1)	0.1	0.05	0.01	

DE KROOK

- Background information
- Project description
- Risk analysis
- Fuzzy Set Theory
- Fuzzy approach applied on De Krook
- Recommendations for the future
- Conclusion

Conclusion

What have we learned today?

Easy method to rank the risks for a construction project

& Nice overview of the overall impact of risk

Identify relationships risk sources - consequences

Makes effective management possible

The management of a construction project is a very complex task

SOS Mario

Thank you for your attention!