

An analytical model for budget allocation in risk prevention and risk protection

Xin Guan, Tom Servranckx, Mario Vanhoucke

April 21, 2021

GHENT UNIVERSITY

if you want to refer to this presentation, please refer to :
Guan, X., Servranckx, T. and Vanhoucke, M. (2021). An analytical model for budget allocation in risk prevention and risk protection. Working paper.

OUTLINE

- Introduction
- Problem formulation
- Analytical optimality
- Risk examples
- Experiments
- Conclusion

INTRODUCTION

Project Risk

- Uncertain events or conditions
- Negative impact (project delay, budget overrun, failure ...)

INTRODUCTION

Project Risk

- Uncertain events or conditions
- Negative impact (project delay, budget overrun, failure ...)

Risk response strategy

INTRODUCTION

Project Risk

- Uncertain events or conditions
- Negative impact (project delay, budget overrun, failure ...)

Measure

- Expected loss

= Risk Probability (P) * Risk Loss (L)

Risk response strategy

- Risk Prevention (reduce P)
- Risk Protection (reduce L)

INTRODUCTION

Project Risk

- Uncertain events or conditions
- Negative impact (project delay, budget overrun, failure ...)

Measure

- Expected loss
 - = Risk Probability (P) * Risk Loss (L)

Risk response strategy

- Risk Prevention (reduce P)
- Risk Protection (reduce L)

Research question:

How to allocate budget among risk

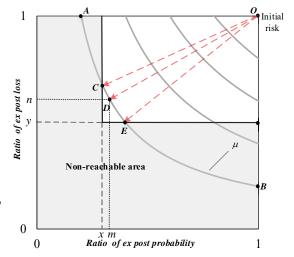
prevention and risk protection?

5

PROBLEM FORMULATION

- **Problem statement** - initial risk (P0, L0, R0) - accepted risk level (R) \rightarrow risk response requirement - minimal risk (P, L) \rightarrow risk controllability - **Aim:** find the cheapest path from point O to curve CE?

GHENT UNIVERSITY


PROBLEM FORMULATION

Problem statement

- initial risk (P0, L0, R0)
- accepted risk level (R)
 - \rightarrow risk response requirement (μ = R/R0)
- minimal risk (<u>P</u>, <u>L</u>)
 → risk controllability (**x** = <u>P</u>/P0, **y** = <u>L</u>/L0)

– Aim:

find the cheapest path from point O to curve CE?

<u>P</u> P

Probability

 P_0

7

PROBLEM FORMULATION

Model formulation

- Relation between the cost (q, r) and effect (m, n) of risk response strategy:
- Linear:
- A higher risk reduction requires more budget

$$q = aP^0(1-m)$$
 $r = bL^0(1-n)$

- Nonlinear:
- After a certain risk reduction, further risk reduction requires a larger investment

$$q = aP^0 ln \frac{1-x}{m-x} \qquad \qquad r = bL^0 ln \frac{1-y}{n-y}$$

PROBLEM FORMULATION

– Model formulation

- Relation between the cost (q, r) and effect (m, n) of risk response strategy:
- Linear:
- A higher risk reduction requires more budget

$$q = aP^0(1-m)$$

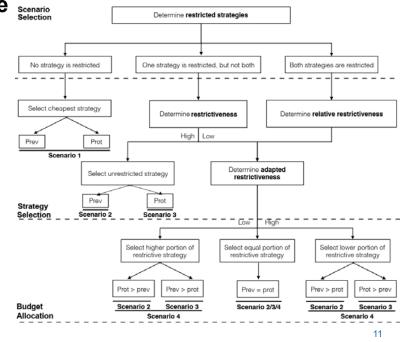
- Nonlinear:
- After a certain risk reduction, further risk reduction requires a larger investment

$$q = aP^0 ln \frac{1-x}{m-x} \qquad r = bL^0 ln \frac{1-y}{n-y}$$

– Model:

LBAP min
$$aP^{0}(1-m) + bL^{0}(1-n)$$

s.t. $mn = \mu$

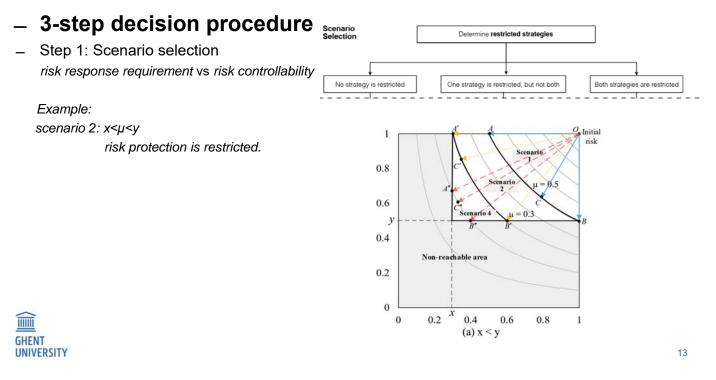

NBAP min
$$aP^{0}(1-m) + bL^{0}(1-n)$$

s.t. $mn = \mu$

 $r = bL^0(1-n)$

3-step decision procedure Scenario Selection

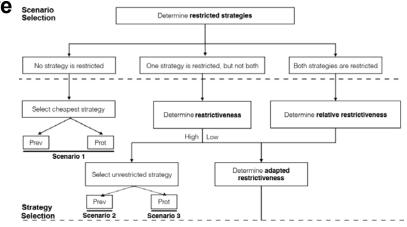
- Step 1: Scenario selection
- Step 2: Strategy selection
- Step 3: Budget allocation

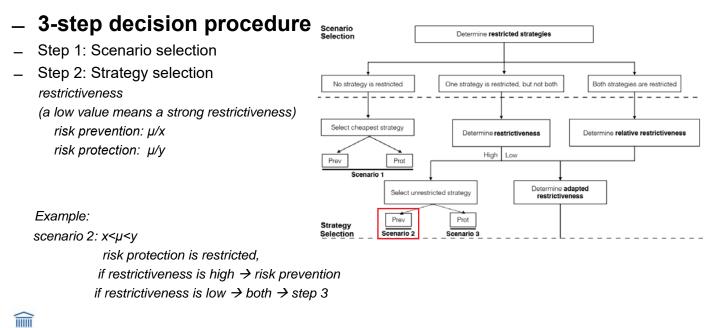

ANALYTICAL OPTIMALITY

3-step decision procedure s

 Step 1: Scenario selection risk response requirement vs risk controllability

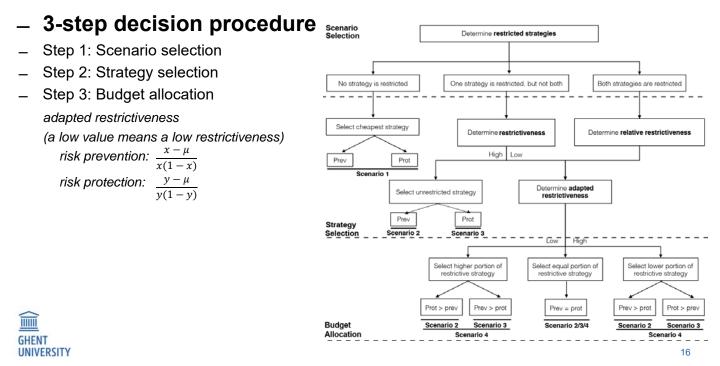
e	Scenario Selection			Determine restricted strategies]
lity							
шу	No strategy is restricted		One strategy is restricted, but not both		ΙΓ	Both strategies are restricted	

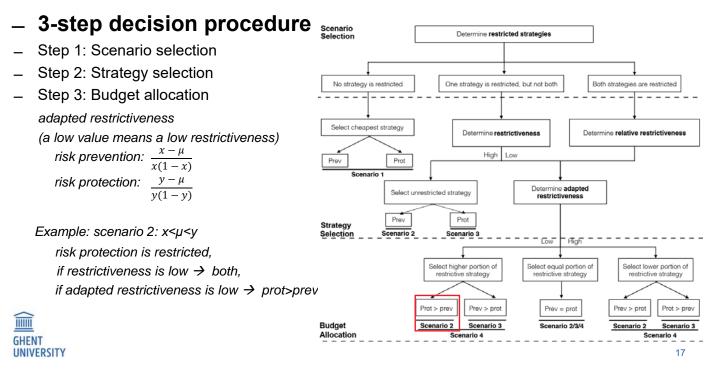



ANALYTICAL OPTIMALITY

3-step decision procedure Scenario Selection

- Step 1: Scenario selection
- Step 2: Strategy selection restrictiveness
 - (a low value means a strong restrictiveness) risk prevention: μ/x risk protection: μ/y





15

ANALYTICAL OPTIMALITY

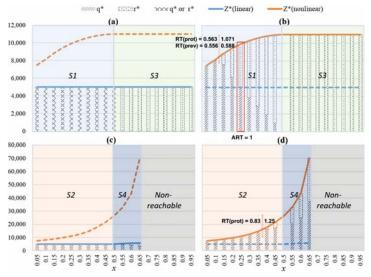
GHENT UNIVERSITY

RISK EXAMPLES

Risk ID		Strategies from literature or practice	Budget allocation decision from model
1	Acts of God. (extreme weather etc.)	Buy insurance	Protection
2	People safety. (fall, exposure to harmful substances, etc.)	Additional safety equipment,Investment in training and protective materialsInsurance	Prevention
3	Potential conflicts between owner and stakeholders.	Creating communication channelsContract clauses, penalty clausesRisk sharing	Protection > prevention
4	Poor schedules or unclear project scope.	 Regular meeting Including buffer Activity crashing Reactive scheduling 	Prevention > protection

RISK EXAMPLES

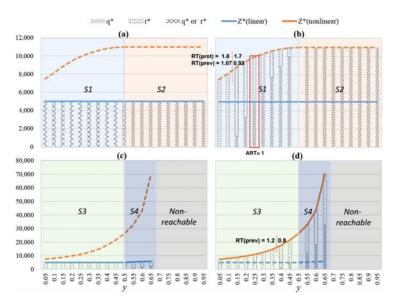
Ris	k ID	Strategies from literature or practice	Budget allocation decision from model
1	Acts of God. (extreme weather etc.)	Buy insurance	Protection
2	People safety. (fall, exposure to harmful substances, etc.)	Additional safety equipment,Investment in training and protective materialsInsurance	Prevention
3	Potential conflicts between owner and stakeholders.	Creating communication channelsContract clauses, penalty clausesRisk sharing	Protection > prevention
4	Poor schedules or unclear project scope.	 Regular meeting Including buffer Activity crashing Reactive scheduling 	Prevention > protection


- Our model results are consistent with the strategies from literature or practice.

EXPERIMENTS

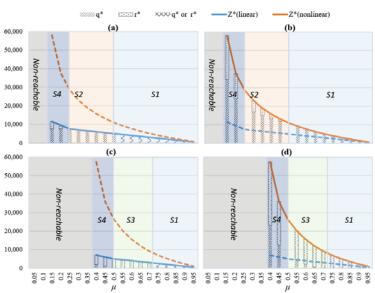
Impact of risk controllability in probability (x)

- the controllability has no significant effect on the optimal risk cost in the LBAP.
- In NBAP,
- Scenarios 1 and 2, the impact of risk controllability is reflected on the restrictiveness and the adapted restrictiveness.
- Scenario 3, the controllability in risk probability has no effect on the optimal risk cost since the complete budget is allocated to risk protection.
- Scenarios 2 and 4, a lower controllability in risk probability (a higher x) leads to a greater investment in risk prevention.



19

EXPERIMENTS


- Impact of risk controllability in loss (y)
- Similar results are observed.

EXPERIMENTS

- Impact of response requirement (μ)
- A strict requirement always leads to a higher response cost.

CONCLUSIONS

- Conclusions
 - A three-step decision-making process can be followed.
 (the risk response requirement, risk controllability, and the restrictiveness of strategies)
 - A lower controllability in risk loss (probability) leads to a greater investment in risk prevention (protection).

- Future research

- A more general case: relax the linear and nonlinear relations
- Multiple risks: extend to multiple risks and construct a risk network with complex relations

FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION

Xin Guan PhD researcher	
Department: Business Informatics and Operations Management Research group: Operations Research & scheduling	 f Universiteit Gent ✓ @ugent in Ghent University
Email: xin.guan@ugent.be www.ugent.be	

