

If you want to refer to this research, please refer to Van Eynde, R., & Vanhoucke, M. (2020). Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling. *Journal of Scheduling*, *23*(3), 301-325. Van Eynde, R., & Vanhoucke, M. New summary measures and datasets for the multi-project scheduling problem. *Under revision* The datasets can be found on: *https://projectmanagement.ugent.be/research/project_scheduling/RCMPSP*

1

DEPARTMENT OPERATIONS MANAGEMENT AND BUSINESS INFORMATICS RESEARCH GROUP OR&S

<u>NEW BENCHMARK</u> DATASETS FOR THE RCMPSP

Rob Van Eynde and Mario Vanhoucke

OUTLINE

- -Previous research
- -New summary measures
- -Dataset generation and evaluation
- Impact on solution algorithms

3

PREVIOUS RESEARCH [5]

- Gaps in literature:
 - Feasible range of parameter values
 - Parameter interdependencies
 - Cannot describe all portfolio characteristics

RESEARCH OBJECTIVES

- Develop new summary measures:

- Describing a wider range of portfolio characteristics

7

- Having clear ranges of feasible values
- Having as few interdependencies as possible
- -Generate new datasets using the measures
- Compare algorithm performance on new datasets

<section-header><list-item><list-item><list-item><list-item><list-item>

IMPACT ON SOLUTION ALGORITHMS

25

PRIORITY RULES

Top 10 ranking PRs (project rule - activity rule)

24_{-60}
MINCP-MINSLKd
MINCP-MINLST
MINCP-MINLFT
MINSP-MINSLKd
MINSP-MINLST
MINCP-MINSLKs
MINSP-MINLFT
MINCP-MAXWK
MINSP-MINSLKs
MINCP-MINEST

26

GENETIC ALGORITHM

– Improvement upon best performing PR

Set	Improvement
Set 1	12.46~%
Set 2	5.64~%
Set 3	13.16~%
Set 4	4.48~%

27

27

28

CONCLUSION

- Developed new summary measures
- Generate new datasets covering wider range of feature space
- The new features impact algorithm performance

REFERENCES

- [1] Browning and Yassine (2010), A random generator for resource-constrained multi-project network
- problems. *Journal of Scheduling* [2] Homberger (2007). A multi-agent system for the decentralized resource-constrained multi-project scheduling problem. International Transactions in Operational Research
- [3] Homberger (2012). A (μ , λ)-coordination mechanism for agent- based multi-project scheduling. OR Spectrum
- [4] Labro, E. and Vanhoucke, M. (2008). Diversity in resource consumption pat- terns and robustness of costing systems to errors: electronic companion. *Management Science* • [5] Van Eynde and Vanhoucke (2020), Resource-constrained multi-project scheduling: benchmark datasets
- and decoupled scheduling. Journal of Scheduling
- [6] Vázquez et al. (2015). Learning process on priority rules to solve the RCMPSP. Journal of Intelligent Manufacturing,

Rob Van Eynde PhD Researcher	
DEPARTMENT OF OPERATIONS MANAGEMENT AND BUSINESS INFORMATICS E rob.vaneynde@ugent.be	 f Universiteit Gent ✓ @ugent in Ghent University
www.ugent.be	