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[ 1. Data

Research on artificial project
generators since 2003 and
empirical project data since 2015

2, Learning

Teaching Project Management
course modules at business Schools
and companies since 2002

3. Control

Long history of project control
studies between 2006 and 2016

4. Calibration

| First data calibration study ||
published in 2016 ]\

Operations Research & Scheduling Research Group
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\ / Study 1. Data analysis \ /
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Artificial data

Study 2. Classroom experiments

Classification of 7 technical and non-technical skills
Statistical analysis of 349 student grades

1. Data

3 new studies on collecting project

data (2 PhD students)

2, Learning

Data classification and
generation of new data
(stimulating research)

Follow-up study with student
experiments

Study 3. Analytical control

Analytical buffering methods to control projects 3. Control

Comparison with Statistical Project Control methods
Currently 3 PhD students started

Empirical data on the next phase of project control

Extending the dataset
from 50 to 125 publicly
available projects

4. Calibration
Study 4. Data calibration

Data calibration in practice (big
projects) and machine learning (2
PhD students)

Fit realistic probability distributions using a mix of

human partitioning and statistical partitioning /

/
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4
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Current research study (2017 - 2020)
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Outline

—Is project data useful for
» Academics (research)
» Students (learning)
» Professionals (managing)
— Which data?
» Artificial projects, or real project?

esearch study (2017

4 themes

— Study 1. Project data analysis

— Study 2. Classroom experiments (students)
— Study 3. Analytical control (academics)

— Study 4. Data calibration (professionals)
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Pefinitions

Project data
+ : Project network (activities and precedences and planned estimates (durations and costs))
<<= :Availability and requirements for renewable resources
+++ : Project progress data: real values (durations, costs, risk, earned value, ...)

Project control
Monitoring the progress of a project using key performance indicators for time and cost
Generating warning signals when indicators exceed a threshold (project in trouble!)
Taking corrective actions to bring the project back on track

Data-driven project management
Integrating project planning with risk analysis and project control in one single decision-support system
to improve the success of a project (on time, on budget, within specs)

a.k.a. dynamic scheduling or integrated project management and control

Mario Vanhoucke

Study 1.

Project data analysis
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Study 1. Project data analysis

“The resource-constrained project scheduling problem [RCPSP] consists

of finding a schedule of minimal duration by assigning a start time to each

activity such that the precedence relations and the renewable resource
availabilities are respected”

4 Is the RCPSP research still relevant? Q'g.
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Is the RCPSP research still innovative?
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Professor-emeritus Willy Herroelen
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Study 1. Project data analysis

Classification SolutionsUpdate Exact algorithms Hard instances
(Vanhoucke et al., 2016) (Vanhoucke and Coelho, 2018) (Coelho and Vanhoucke, 2018) (Coelho and Vanhoucke, 2020)

Artificial data Empirical data
7 databases containing 4,860 projects 1 database containing 52 — +150 projects
with known network & resource indicator values with real progress data
P {

,Moozrew An overview of project data for integrated project . . Construction and evaluation framework for a real-life
] ‘= management and control project database

™ Journal of Modern Project Management (2076) International Journal of Project Management (2015)

www.or-as.be/journals doi: 10.1016/j.ijproman.2014.09.004
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Study 1. Project data analysis

SolutionsUpdate

(Vanhoucke and Coelho, 2018)

Classification
(Vanhoucke et al., 2016)

A
ik

» Improve benchmarking
» New website to down/upload solutions

»  New software tool to work offline (SolutionsUpdate)

»  Values for LB and UB and BKS (and schedules!)
» New database NetRes

Computers and Industrial Engineering (2018)
doi: 10.1016/j.cie.2018.02.001

Exact algorithms
(Coelho and Vanhoucke, 2018)
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lutions for existing datasets

Tool

Results files
(Multiple files with solutions for each dataset)

Instance files
(One file for each project file)
= Project

Dataset file

A tool to test and validate algorithms for the resource-constrained project scheduling problem

Hard instances
(Coelho and Vanhoucke, 2020)
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Study 1. Project data analysis

SolutionsUpdate

(Vanhoucke and Coelho, 2018)

Classification
(Vanhoucke et al., 2016)

A
ik

»  Dynamic lower bound selection (13)

» 3 branching schemes (SER, PAR, AST)
» 3 branching orders (BLB, MTW, RAN)

»  Single-mode and multi-mode

» Datasets: PSPLIB, RG30, RG300, MT(RC), MMLIB, Boctor

» Composite search strategy

Computers and Operations Research (2018)
doi: 10.1016/j.cor.2018.01.017

An exact composite lower bound strategy for the resource-constrained project scheduling problem

Exact algorithms
(Coelho and Vanhoucke, 2018)

Algorithm 1 Dynamic lower bound selection.
1: procedure DYNAMICSELECTION()
2: CLB(set) — LBipjipeser\tabu
LBpest = MaXyipeser\tabu LBip

3
4 for VID e set \ tabu do

5: if ID ¢ cred then

6: if LBjp < LByy; then

7 Add ID to tabu list for the next 2""iv iterations
8

3 Set nrljp + +
9: else
10: Add ID to cred list for the next nrCp iterations
11 Set nrCyp = min(nrCp + 1, nrGnax)
12: Remove LBs from tabu and cred lists when # iterations are
exceeded

Hard instances
(Coelho and Vanhoucke, 2020)
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Study 1. Project data analysis

Classification SolutionsUpdate Exact algorithms
(Vanhoucke et al., 2016) (Vanhoucke and Coelho, 2018) (Coelho and Vanhoucke, 2018)
i

Hard instances
(Coelho and Vanhoucke, 2020)

Set 3

I (LB <BKS)

Experiment 2.
110 months
Phase | & Il

(restrictions/relaxations 1, 2)

Two procedures to change instances

\  252instances

Experiment 4.
183 months

. N . Hardness First Procedure
Starting with 13,980 projects
Using +40 years of computer power
623 new hard instances found PEPLE, D52 0 r s

5,610 instances

Phase | & Il
(restrictionsirelaxations 1, 2)
8,370 instances

4
4
4
4

Experiment 1.
173 months

HardSet
623 instances
(61 41274 135)

Phase Il

1,315 instances

Phase | &Il

instances

Set 2
(restrictionsirelaxations 1,2, 3) 422 instances
6 x 641 inst:

Experiment 3.
66 months

Going to the core of hard resource-constrained project scheduling instances
Computers and Operations Research (2020)
doi: 10.1016/j.cor.2020.104976

Now it's up to you!
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Study 2.

Classroom experiments
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Study 2. Classroom experiments

L rtm— "
May 3,2019, UCL School of Management (London, UK)

Programme Year Country #Groups #Students
1. MIMS 2016  Belgium 11 33
2. MGM 2017  Belgium 9 28
3. MSM 2017 UK 8 18
4. MIMS 2017  Belgium 11 33
5. MGM 2018 Belgium 6 20
6. MSM 2018 UK 17 68 The Data-Driven
7. MIMS 2018 Belgium 12 37 Project Manager
3. DDPM 2019  Belgium 10 31 sttt it
9. MSM 2019 UK 19 81 MarioVanhoucke
Tot. 103 349 Apress
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Study 2. Classroom experiments
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PLAN RISK BUFFER MONITOR CONTROL

activity - network - project define - classify - analyse ‘ cut - plan - buffer collect - measure - predict alarm - focus - shoot
Define activity estimates, construct Risk = probability x impact Remove activity protection and  w, Measure the project’s performance _ ' Generate automatic warning signals
a network and a schedule and | buffer the project while it is in progress and predict to detect problems during the
analyse the chances to reach the Define risk classes and analyse the Solve resource over-allocations and the impact of unexpected events on project progress. Take actions
project deadline risk using Monte-Carlo simulations construct a resource schedule the final outcome - whenever necessary!

PERT/CPM SCHEDULE RISK ANALYSIS RESOURCE BUFFER MANAGEMENT EARNED VALUE MANAGEMENT TOP/DOWN CONTROL

May 3,2019, UCL School of Management (London, UK)

The Data-Driven
Project Manager

AStatstcal Batle Against
Project Obstacles

Mario Vanhoutke.

Apress:
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Study 2. Classroom experiments

Hard skills Soft skills

(tools and techniques) (it's all about people)

Communication

(integrating different views and opinions)

Understanding

(comprehension of strengths and weaknesses of methods) Crltlca“ty
Analysis (making sound judgements and decisions)
ff lled “analytical thinking” fatl
(often called “analytical thinking”) HO|IStIC
CG'CU'US (integrating exercises, often called “organisation”)
(correctness of calculation (= traditional exam)) Creativity

(out-of-the-box thinking and flexibility)

Mario Vanhoucke

Study 2. Classroom experiments

Input data Input data
349 students The project life cycle
Programme Year Country #Groups #Students
1. MIMS 2016  Belgium 11 33
2. MGM 2017  Belgium 9 28
3. MSM 2017 UK 8 18
4. MIMS 2017  Belgium 11 33
5. MGM 2018 Belgium 6 20
6. MSM 2018 UK 17 68
7. MIMS 2018  Belgium 12 37
8. DDPM 2019  Belgium 10 31
9. MSM 2019 UK 19 81
Tot. 103 349

Methodology
Structural equation modelling

The Data-Driven
Project Manager

Astaistcl Batle Against
Puject Obsacles

Mario Vanhoutke

Apress




Study 2. Classroom experiments

HARD HARD HARD HARD HARD
SOFT SOFT SOFT SOFT SOFT
Experiment 1. Impact of skills on student performance
* Both soft and hard skills impact the student performance
* Hard skills are mainly important at the start and end of the project
» Soft skills are important throughout the entire project

BUFFER MONITOR CONTROL
cut-pian - butfer o -pe r

resource BurreR manacement Jll - EARNED VALUE MANAGEMENT T08/DOWN CONTROL

SKILLS SKILLS  SKILLS SKILLS SKILLS

BUFFER MONITOR CONTROL
batte ot

Experiment 2. Improvement of skills
» Both the hard and soft skills improve throughout the course module

pesounce surrER wanaGEMENT Jll EARNED VALUE MANAGEMENT

SKILLS SKILLS  SKILLS SKILLS SKILLS

Experiment 3. Importance of skills in project phases
» Not all seven skills are equally important in each project phase o< i gt LA i
+ Always a combination of soft and hard skills in each project phase (Exp. ?
» Later phases require more skills (planning is easy, control is difficult)
* The analytical skill the only skill that is always important

+<—— Analytical skil ———

Mario Vanhoucke

Study 3.

Analytical project control
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Study 3. Analytical project control
Project control

Setting tolerance limits to measure time/cost performance

Opportunity!

- Re-baselining possible
UCL frmmmmmmmmmmmmmmss e m e e R gfm m e

LCL fr-==-=======mmmmmmmmmmmmmmmmmnnes
® Danger!
Take corrective actions

» Project progress (time)

Mario Vanhoucke

Study 3. Analytical project control

1995

(teacher)

1995
Statistical process control

Now ;
(black turns into grey)

20 years later

Statistical project control

1995

(student)

Now

(long becomes short)
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Study 3. Analytical project control

Type | error

"false positive"

Probability of overreaction

Type Il error

"false negative"

Detection performance

|

> Area under the curve <«
“Arbitrary choices: AUC = 0.5"
Perfect! Area under curved line
AUC >50%
1 /
08 //7
° 08
% 'ﬁ 0.7
g g 08 Better
g o / ”><
5 :ﬂ 04 Area under diagonal line
8o Worse / AUC = 50%
§ + o3 (= random)
° 02 7
01
s}
s} 1 2 3 4 5 B 7 8 9 1
probability of overreactions
(7 felse positves) Mario Vanhoucke
Study 3. Analytical project control
EASY ADVANCED
Static project control Statistical project control
Rules of thumb Data generation
No data analysis Statistical analysis (tolerance limits)
Opportunity! G:eﬁ:’a‘;;ﬁ::g“pyo!ssible
P T ()i e
. L4 o °
.
CH ™ 2 . . = Project progress = - - * = = o Project progress
. - . o ® .
° L]
=) LTL
(O L.

Take corrective actions

EASY

Time buffers
(linear action thresholds) |

Data-driven decision making
(data and intuition)
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Study 3. Analytical project control

Analytical project control
No data generation or advanced statistics
Better than the (oversimplified) rules of thumb

ADVANCED
EASY Statistical project control
Static projeCt contrOI Statistical analys?safglgz:;rﬁgg;

Rules of thumb
No data analysis

Mario Vanhoucke

Buffer control methods

Everything’s under control Watch out! Action time!
(project is early or on-time) (project delays expected) (project likely to be late)

Real project problems
(project is no longer under control)

Allowable buffer consumption at each phase of the project

4 ' <

Time Time Cost Risk Resources

“1 day = 1 unit” ‘non-linear accrue” ‘EVM data” “activity sensitivity” “work content”

Mario Vanhoucke




Analytical buffers Corrective actions Empirical validation Budget limits
(Martens and Vanhoucke, 2017a,b) (Martens and Vanhoucke, 2019) (Martens and Vanhoucke, 2018) (Song et al., 2020)

Analytical project control = statistical project control
+ Control charts (control limits): No simulations necessary!

* Project progress (warning signals): No advanced statistics necessary!

« Similar results (only slightly less reliable, not worth mentioning)

g
AUTOMATION IN
ONSRUCTION
The impact of applying effort to reduce activity variability on the project time and cost performance
—_— European Journal of Operational Research (2019)
= doi: 10.1016/j.ejor.2019.03.020
“ " An empirical validation of the performance of project control tolerance limits
(uf‘g’ Automation in Construction (2018)

doi: 10.1016/j.cie.2017.05.020

==/ The integration of constrained resources into top-down project control
® = = Computers and Industrial Engineering (2017)
creRkronCESEReh  doi: 10.1016/j.autcon.2018.01.002
A buffer control method for top-down project control
European Journal of Operational Research (2017)
doi: 10.1016/j.ejor.2017.03.034

Mario Vanhoucke

Analytical buffers Corrective actions Empirical validation Budget limits
(Martens and Vanhoucke, 2017a,b) (Martens and Vanhoucke, 2019) (Martens and Vanhoucke, 2018) (Song et al., 2020)

Analytical project control = statistical project control
+ Control charts (control limits): No simulations necessary!

* Project progress (warning signals): No advanced statistics necessary!

+ Similar results (only slightly less reliable, not worth mentioning)

APC works better when realistic data is available (e.g. risk data)

=~ Using schedule risk analysis with resource constraints for project control
(@ European Journal of Operational Research (2027)
- doi: 10.1016/j.ejor.2020.06.015
The impact of a limited budget on the corrective action taking process
w—— = European Journal of Operational Research (2020)
Gy doi: 10.1016/).€jor.2020.03.069

- Tolerance limits for project control: An overview of different approaches

Computers and Industrial Engineering (2019)
doi: 10.1016/j.cie.2018.10.035

Mario Vanhoucke




Study 4.

Data calibration

Mario Vanhoucke

Study 4. Data calibration

“The predictive value of Monte Carlo simulations lends itself to a diverse field of business

applications, ranging from risk management to financial planning to economic modelling.

Monte Carlo simulations can be used in decision making to provide potential solutions to
complex problems.”

[Quote from www.referenceforbusiness.com)

Full factorial design Very case specific

(span the full range of complexity) (realistic for my projects, | don’t care about others)

+/

Data calibration

T
— A
| 4
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The simple idea of data calibration

Input Calibration Output
>3 - S e ( )
X H
Schedule  Reality Q
Pata calibration
Project data Statistical testing Probability distributions
PLAN: Duration estimates ) Ho ] o Clusters of activities of project with known distribution
REAL: Real durations durations follow predefined distribution (with known average and standard deviation)
Option 1.
Curve fitting
Option 2.
Calibration

» human errors
» human expertise
» Automatic clustering

Mario Vanhoucke

Study 4. Data calibration

Data calibration Empirical validation Human expertise Statistical partitioning
(Trietsch et al, 2012) (Colin and Vanhoucke, 2016) (Vanhoucke and Batselier, 2019a) (Vanhoucke and Batselier, 2019b)

(" ) =

S

=)
1. Assume a probability distribution Calibrations works! data can’t replace human intuition human intuition can’t replace data
2. Remove data with human errors (24 projects) (97 projects) (125 projects)

3. Fit remaining data

Add
project data

Hypothesis test 1
Hy: d/ djfolows a logriorml distbuton

Rejectifp<a

Remove on-time points coopt ifp 2
Hypothesis test 2
Rejectifp<a
Remove % of tardy points
Hypothesis test 3
Rejectitp <a
Rounding (removing ties)
Hypothesis test 4

Reject fp <o

Mario Vanhoucke




Study 4. Data calibration

Data calibration
(Trietsch et al, 2012)

Empirical validation
(Colin and Vanhoucke, 2016)

Construction
Engineering and

Management

asa a

1. Assume a probability distribution
2. Remove data with human errors (24 projects)

3. Fit remaining data
a0%
project data

Hypothesis test 1
Hy: 1 djfolows a logrorml distbuton

Rejectfp <

Remove on-time points
Hypothesis test 2

Relectifp<a

Remove % of tardy points
Hypothesis test 3

Rejectfp <a
Rounding (removing ties)
Hypothesis test 4

Remove
project from
da

Acceptitpza

Calibrations works!

Human expertise

(Vanhoucke and Batselier, 2019a)

@
=
== =]=]
===

(97 projects)

Statistical partitioning
(Vanhoucke and Batselier, 2019b)

B

data can’t replace human intuition human intuition can’t replace data

(125 projects)

Mario Vanhoucke

Study 4. Data calibration

Data calibration
(Trietsch et al, 2012)

“UROPEAN  OURNAL OF
CPERATIONAL * ESEARCH

=/

Construction
Engineering and
[

A a

3

1. Assume a probability distribution
2. Remove data with human errors (24 projects)
3. Fit remaining data

Add
project data

Hypothesis test 1
Hy: d/ djfolows a logriorml distbuton

Remove on-time points
Hypothesis test 2

Remove % of tardy points
Hypothesis test 3

Rejectfp <

Rounding (removing ties)
Hypothesis test 4

Acceptitpza

Empirical validation
(Colin and Vanhoucke, 2016)

Calibrations works!

Human expertise

(Vanhoucke and Batselier, 2019a)

data can’t replace human intuition

(97 projects)

Statistical partitioning
(Vanhoucke and Batselier, 2019b)

By

human intuition can’t replace data
(125 projects)

Mario Vanhoucke




Study 4. Data calibration

Data calibration Empirical validation Human expertise Statistical partitioning
(Trietsch et al, 2012) (Colin and Vanhoucke, 2016) (Vanhoucke and Batselier, 2019a) (Vanhoucke and Batselier, 2019b)
L w
ShopeaoumaL o] w‘

PERATIONAL SESEARGH

Construction
Engineering and
Management

asa a

1. Assume a probability distribution Calibrations works! data can’t replace human intuition human intuition can’t replace data
2. Remove data with human errors (24 projects) (97 projects) (125 projects)

3. Fitrema g data

Hypothesis test 1
Hy: 1 djfolows a logrorml distbuton

Acceptitpza

Mario Vanhoucke

Study 4. Data calibration

Data calibration Empirical validation Human expertise Statistical partitioning
(Trietsch et al, 2012) (Colin and Vanhoucke, 2016) (Vanhoucke and Batselier, 2019a) (Vanhoucke and Batselier, 2019b)

Data calibration = curve fitting + activity clusters + human errors
» Parkinson effect is considerably more substantial than the rounding effect

+ Small number of clusters in project data found: Partitioning works!

* Human expertise greatly improves the calibration method

* Human and statistical calibration performs best (97% accepted partitions)

Partitioning setting
(rounding - selection - stopping)
(1-0-1) (1-1-1)

PD (x4) PD (x5) WP RP |PD (x4) PD (x5) WP RP
(a) # projects 3 53 53 21 83 83 53 21
avg, activiti 61 61 72 42 61 61 72 42
tivit] 5,068 5,068 3,796 887 5,068 5,068 3,796 887
2 N 7 T & B T A % 213777266
# partitions (avg/p) 2.8 2.6 80 31 2.8 2.6 80 3.1
# partitions (max) 1 4 26" 6 1 1 26" 6
1 partition [%] 4 6 36 0 4 6 36 0
2 partitions [%) 32 40 FER Tt 32 40 5 u
3 partitions %] 45 46 8 52 45 46 8 52
4 partitions [%] 19 8 7 19 19 8 7 19
5 partitions [%] 0 0 2 0 0 0 2 0
6 partitions [%] 0 0 2 5 0 0 2 5
(b2)  # subpartitions (statistical) - - - - 423 399 631 117
# subpartitions (ave/p) - - - - 51 48 19 56
# subpartitions (max) - - - - 1 1 5 4

1 subpartition [%]
2 subpartitions [%]
3 subpartitions [
4 subpartitions [%)]
5 subpartitions [%]
@) Tiol. # pariifioning steps
/project
“d) "% act. partition LT
% act. partition P

Ey 0.161 0.171 0.196 1101 0.108 0.130 0.146  0.088
avg. p 0.614 0.589 0.658  0.741 0.774 0.756 0.783  0.811
accepted (sub)partitions [%] | 88 85 92 9% 97 94 97 97

Mario Vanhoucke




Study 1. Project data analysis
Study 2. Classroom experiments
Study 3. Analytical project control
Study 4. Data calibration

Mario Vanhoucke

The future of my team

PAST

PRESENT

(o

Research on artificial project
generators since 2003 and
empirical project data since 2015

Study 1. Data analysis

& [

“ali:

- Artificial data

2, Learning
Data classification and
generation of new data
(stimulating research)

Teaching Project Management
course modules at business Schools
and companies since 2002

3. Control
Empirical data
Long history of project control 1
studies between 2006 and 2016 Extending the dataset
from 50 to 125 publicly

4. Calibration available projects

First data calibration study
published in 2016

Study 2. Classroom experiments

Classification of 7 technical and non-technical skills
Statistical analysis of 349 student grades

Study 3. Analytical control

Analytical buffering methods to control projects
Comparison with Statistical Project Control methods

Study 4. Data calibration

Fit realistic probability distributions using a mix of
human partitioning and statistical partitioning

Opera’rins Keserch & cheduling Kesearh Grop

/ KData

z

FUTURE

~

3 new studies on collecting project
data (2 PhD students)

2, Learning

Follow-up study with student
experiments

3. Control

Currently 3 PhD students started
on the next phase of project control

4. Calibration

Data calibration in practice (big
projects) and machine learning (2
PhD students)
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The future of my team

PAST

(ome

Research on artificial project
generators since 2003 and
empirical project data since 2015

2, Learning

Teaching Project Management
course modules at business Schools
and companies since 2002

3. Control

Long history of project control
studies between 2006 and 2016

4. Calibration

First data calibration study
\ published in 2016 /

PRESENT

@dy 1. Data analysis
N

£
wl
Artificial data
Data classification and
generation of new data
(stimulating research)
Empirical data
Extending the dataset
from 50 to 125 publicly
available projects

.

Study 2. Classroom experiments

Classification of 7 technical and non-technical skills
Statistical analysis of 349 student grades

Study 3. Analytical control

Analytical buffering methods to control projects
Comparison with Statistical Project Control methods

Study 4. Data calibration

Fit realistic probability distributions using a mix of
human partitioning and statistical partitioning

Operations Research & Schduling Kesearc roup

FUTURE

3 new studies on collecting project
data (2 PhD students)

2, Learning

Follow-up study with student
experiments

3. Control

Currently 3 PhD students started
on the next phase of project control

4. Calibration

Data calibration in practice (big
projects) and machine learning (2
PhD students)
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The future

PAS

-

Research on artificial
generators since 200.
empirical project data
2, Learning

Teaching Project Mai
course modules at b
and companies since

3. Control

Long history of project
studies between 2006

4. Calibration

First data calibration
published in 2016
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The future of project data

Machine Learning & Artificial Intelligence

RUST ME.
~ S

“Trust me” “Automatic control”

Who needs data when you have opinions? ) Who needs project managers when you have algorithms?
Solve problems when they occur! Algorithms will replace people

Current research projects
Understanding data before going to Al

Bridging the gap between the youngsters and the elderly

Mario Vanhoucke

The future of now (the next couple of minutes or so)

€

www.or-as.he/research/datahase

Download presentation slides
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Gone but not forgotten
Dr. Salah EImaghraby (1927-2016)
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