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PAST PRESENT FUTURE
Study 1. Data analysis

Artificial data

Empirical data

Study 3. Analytical control

Study 2. Classroom experiments

Study 4. Data calibration

Data classification and
generation of new data
(stimulating research)

Extending the dataset 
from 50 to 125 publicly 
available projects

Classification of 7 technical and non-technical skills 
Statistical analysis of 349 student grades

Analytical buffering methods to control projects
Comparison with Statistical Project Control methods

Fit realistic probability distributions using a mix of 
human partitioning and statistical partitioning

1. Data 

Research on artificial project 
generators since 2003 and 
empirical project data since 2015

2. Learning 

Teaching Project Management 
course modules at business Schools 
and companies since 2002

3. Control 

Long history of project control 
studies between 2006 and 2016

4. Calibration 

First data calibration study 
published in 2016

1. Data 

3 new studies on collecting project 
data (2 PhD students)

2. Learning 

Follow-up study with student 
experiments

3. Control 

Currently 3 PhD students started 
on the next phase of project control

4. Calibration 

Data calibration in practice (big 
projects) and machine learning (2 
PhD students)

Current research study (2017 - 2020)

Operations Research & Scheduling Research Group

Mario Vanhoucke

Outline 

– Is project data useful for 
‣ Academics (research) 
‣ Students (learning) 
‣ Professionals (managing) 

– Which data?  
‣ Artificial projects, or real project?

4 themes 

– Study 1. Project data analysis 
– Study 2. Classroom experiments (students) 
– Study 3. Analytical control (academics) 
– Study 4. Data calibration (professionals)

Welcome to 
the OR&S group
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Definitions

Project data 
: Project network (activities and precedences and planned estimates (durations and costs)) 
: Availability and requirements for renewable resources 
: Project progress data: real values (durations, costs, risk, earned value, …) 

Project control 
Monitoring the progress of a project using key performance indicators for time and cost 
Generating warning signals when indicators exceed a threshold (project in trouble!) 
Taking corrective actions to bring the project back on track 

Data-driven project management 
Integrating project planning with risk analysis and project control in one single decision-support system 
to improve the success of a project (on time, on budget, within specs) 
a.k.a. dynamic scheduling or integrated project management and control 

Mario Vanhoucke

Study 1.  

Project data analysis

José Coelho
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Who cares? 

(but I think it is
)

“The resource-constrained project scheduling problem (RCPSP) consists 
of finding a schedule of minimal duration by assigning a start time to each 
activity such that the precedence relations and the renewable resource 

availabilities are respected”

Is the RCPSP research still relevant?

Is the RCPSP research still innovative?

I doubt! 
(sometimes)

Professor-emeritus Willy Herroelen

Study 1. Project data analysis

Mario Vanhoucke

Study 1. Project data analysis

Classification 
(Vanhoucke et al., 2016)

SolutionsUpdate 
(Vanhoucke and Coelho, 2018)

Exact algorithms 
(Coelho and Vanhoucke, 2018)

Hard instances 
(Coelho and Vanhoucke, 2020)

An overview of project data for integrated project 
management and control  
Journal of Modern Project Management (2016) 
www.or-as.be/journals

Construction and evaluation framework for a real-life 
project database 
International Journal of Project Management (2015) 
doi: 10.1016/j.ijproman.2014.09.004

Empirical data 
1 database containing 52 → +150 projects 

with real progress data

Collected

Artificial data 
7 databases containing 4,860 projects 
with known network & resource indicator values

Generated
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Study 1. Project data analysis

A tool to test and validate algorithms for the resource-constrained project scheduling problem 
Computers and Industrial Engineering (2018) 
doi: 10.1016/j.cie.2018.02.001

project database website mentioned in these appendices.
These seven sets (and any other combination of the 16 possible sets)

can be used by researchers in different ways serving different purposes.
Since each set contains a lot of instances (up to 720,000), only parts of
the set can be used for some research studies, while the complete set
might be used for other research purposes. An illustrative re-
commendation of how to use these sets for different research purposes
is given along the following lines:

• Training set: Using test instances to train procedures for parameter
fine-tuning should ideally be done on test instances not used for
evaluating the performance of the newly developed algorithm.
Moreover, parameter fine-tuning should not necessarily be done on
a huge amount of data, but instead on a small number of instances
that are as diverse as possible. It is recommended to use as many sets
as possible (all the seven sets as proposed earlier or even the 16
possible sets) but only selecting a very small number of instances
from each set, e.g. selecting the instances in steps of e.g. 10,000. In
doing so, priority is given on diversity of test instances rather than
the amount of instances used, hereby avoiding over-fitting when
tuning the algorithmic parameters. As an example, this means that
only 54 instances should be chosen from the MT(SP), and a similar
calculation can be done for the others sets.

• Exact algorithms: Exact algorithms are used to solve instances to
optimality. While the obvious drawback of this approach is the ex-
tensive burden on the computer time, the advantage is that these
studies aim at reporting optimal solutions as benchmark solutions
for a wide set of projects to be used for future research purposes.
Therefore, instances could (and should) be selected in steps of 1000,
resulting in e.g. 540 for the MT(SP) dataset, without loosing any
value for the network and/or resource indicator.

• Priority rules/lower bounds: The calculations of heuristic solutions
using priority rules or the calculations of lower bounds should be
done in fractions of milliseconds, and can serve as a basis for com-
parison with other solutions procedures. Thanks to their easy and
quick solution process, it is recommended to use all instances for a
particular chosen dataset.

• Meta-heuristic procedures: Meta-heuristics procedures aim at com-
bining speed and quality and therefore hold the middle between the

approach of exact algorithms and the easy and quick priority rules.
When instances are selected in steps of 100, part of the solutions can
be compared with the optimal solutions (every 1000 instance), and
no network and/or resource indicator is skipped. For the MT(SP) set,
this would result in 5400 instances, which is reasonable for quick
procedures.

3. Uploading solutions

Given the huge amount of project data, both the existing ones as
described in Vanhoucke et al. (2016) as the new one of Section 2.2.2,
the main purpose of these datafiles is that they facilitate researchers to
develop better algorithms and search processes to better solve real-life
instances. However, it is often the case that researchers cannot compare
solutions because they are not available, or because they are not tested
in the same way. A well-known exception is the PSPLIB set that has
become the standard for comparison. This section presents a new and
simple way to share solutions between researchers and to analyse and
benchmark solutions of all datasets available in the literature. In the
next subsections, both the tool and the way solutions are shared is
discussed, and more details can be found in Appendix B.

3.1. The tool

This section gives a brief summary of the tool called
“SolutionsUpdate” that can be used by researchers to upload new da-
tasets and/or new solutions for (existing) datasets for the RCPSP and
MMRCPSP, and how this tool can be easily used for various research
purposes to facilitate the development of new and improved solution
procedures in the future. The specific details on how the tool must be
used, including command line syntax and formats for downloading and
uploading the various required files is obviously outside the scope of
this paper, and these details are outlined in a tutorial that can be
downloaded from the website. Instead, this section is limited to a brief
overview of the main inputs and outputs relevant for researchers and
the main advantages the tool offers for future research.

The new tool is integrated in a system involving three roles, re-
presented in Fig. 3 by the creator, the maintainer and the user. The
creator is a researcher who wants to upload a new dataset and share it

Fig. 3. SolutionsUpdate: The tool to analyse results, create data and upload new solutions.
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Classification 
(Vanhoucke et al., 2016)

SolutionsUpdate 
(Vanhoucke and Coelho, 2018)

Exact algorithms 
(Coelho and Vanhoucke, 2018)

Hard instances 
(Coelho and Vanhoucke, 2020)

‣ Improve benchmarking 
‣ New website to down/upload solutions 
‣ New software tool to work offline (SolutionsUpdate) 
‣ Values for LB and UB and BKS (and schedules!) 
‣ New database NetRes

Mario Vanhoucke

Study 1. Project data analysis

An exact composite lower bound strategy for the resource-constrained project scheduling problem 
Computers and Operations Research (2018) 
doi: 10.1016/j.cor.2018.01.017

146 J. Coelho, M. Vanhoucke / Computers and Operations Research 93 (2018) 135–150 

Table 8  
Summary of results for LBS and UBS with CLB and CPM bounds (1 h). 

AST SER PAR CSS 

# Solved Avg. CPU # Solved Avg. CPU # Solved Avg. CPU # Solved Avg. CPU 

LBS - CLB J30 352 1025 479 14 480 1 480 2 
J60 279 1533 389 722 407 582 406 581 
J90 274 1563 349 998 365 867 365 871 
J120 58 3262 142 2793 179 2,383 186 2481 
RG30 1036 1570 1513 642 1619 383 1610 388 
RG300 27 3398 29 3383 63 1332 61 2950 
MT(RC) 431 736 540 7 540 1 540 2 

UBS - CPM J30 275 1603 480 7 480 0 480 0 
J60 262 1681 357 994 388 692 388 693 
J90 267 1616 260 1700 342 1013 343 1023 
J120 55 3275 32 3429 126 2531 135 2709 
RG30 729 2203 1554 557 1601 417 1593 425 
RG300 26 3405 0 3600 61 1065 61 2451 
MT(RC) 321 1506 540 6 540 0 540 0 

LBS - CPM J30 323 1249 479 22 480 1 480 1 
J60 279 1549 358 999 391 683 389 688 
J90 275 1566 268 1642 350 977 350 977 
J120 59 3261 37 3392 149 2500 154 2659 
RG30 850 1935 1490 695 1610 400 1604 402 
RG300 26 3405 26 3405 61 1249 61 2933 
MT(RC) 356 1257 540 18 540 1 540 1 

tage that it often can solve more instances to optimality with an 
equal amount of time. Traditionally, branch-and-bound search al- 
gorithms relied on an upper bound strategy and the lower bound 
strategy silently became a forgotten strategy. The results of this ex- 
periment show that the forgotten lower bound strategy should be 
recycled and considered as a worthy alternative. 

Finally, the table also shows the dominance of the parallel strat- 
egy, that is often, although not always, the best performing strat- 
egy. However, sometimes, the CSS search performs slightly better 
than the parallel strategy. Since the CSS contains the PAR strategy 
as one third of the time, it demonstrates that a more clever com- 
bined search strategy using dynamic information (rather than only 
splitting the search time into 3 equal parts) would probably im- 
prove solution even further. Despite this, branching schemes other 
than the parallel strategy should not be ignored, since they also 
find solutions that cannot be found by the parallel one. This is 
clearly shown in Fig. 3 . This figure shows the number of solved 
instances from Table 8 for the PSPLIB dataset, split up for each 
branching scheme (SER, PAR, AST and CSS). The figure shows that 
598 instances could not be solved by our experiments. Moreover, 
it shows that the CSS looses only 5 instances (3 for the parallel 
branching scheme and 2 for the serial branching scheme) that can- 
not be solved. The serial branching scheme cannot solve 83 in- 
stances that can be solved by any of the three other branching 
schemes. Likewise, the parallel branching scheme cannot solve 11 
instances solved by the others, and the AST scheme cannot solve 
479 instances solved by any of the others. This figure clearly il- 
lustrates the dominance of the parallel branching scheme, but also 
shows that the other branching schemes are important candidates 
to optimally solve project instances (since they find solutions that 
other schemes cannot find). 

The table also illustrates that project with only 30 activities 
are not always easy to solve. It is well-known that the J30 in- 
stances can be solved easily with the current state-of-the-art pro- 
cedures, but this is clearly not the case for the RG30 dataset. This 
set contains 1,800 instances with 30 activities, but with another 
topological structure than the J30 set, and none of the experi- 
ments could solve all instances (the best performance is reached 
by the parallel branching scheme in the LBS-CLB strategy that 
solves 1619 or 90% of the instances of this set). Although not 
shown in Table 8 , these experiments have also resulted in some 

Fig. 3. Performance of branching schemes for the PSPLIB instances. 

improved solutions compared to the best known solutions so far 
for the PSPLIB library. More precisely, 135 new lower bounds 
have been found (for the J60 (23), J90 (25) and the J120 (87) 
sets) as well as 5 new optimal solutions (4 for J60 and 1 for 
J90). These values have been submitted to the PSPLIB website and 
the SolutionsUpdate website at www.om-db.wi.tum.de/psplib/ and 
www.projectmanagement.ugent.be/research/data , respectively, and 
are now part of the set of best known solutions. 
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Fig. 2. Performance of the static lower bound strategy (speed and quality). 

putational effort. Hence, quality can only be reached at the ex- 
pense of a huge computational burden, and an adaptation of cope 
with this trade-off is proposed by adding a dynamic dimension to 
the composite lower bound strategy, as will be discussed in the 
next paragraph. 

Step 2. Dynamic LB selection. While the choice of a pointer value 
in the static list allows a sequential selection of a subset of the 
lower bound calculations (i.e. set ), it does not take into account 
that faster lower bound (with lower list pointer values in Table 4 ) 
often perform worse than the more elaborated ones. Indeed, while 
the fast and efficient lower bound obviously require less time, they 
do not always contribute much to the final best lower bound value 
(i.e. LB ID < LB best ). However, Fig. 2 has shown that slower lower 
bounds still contribute to the quality of the lower bound calcu- 
lations, and should therefore sometimes be incorporated in the 
set . These slow but good lower bounds should be taken into ac- 
count during the search, not at every node of the branch-and- 
bound tree but certainly at places where it can add value, while 
the fast and less good lower bounds should sometimes be excluded 
to release some computational time for the others. To that pur- 
pose, a more dynamically steered selection is used on top of the 
static composite lower bound strategy using the principle of a for- 
bidden list and a credit list loosely based on the principles of tabu 
search algorithms as discussed earlier. Rather than using the tabu 
list to prevent circular moves, it dynamically excludes (tabu) and 
includes (credit) some lower bounds from the set , hereby increas- 
ing its speed without loosing too much quality. This dynamic se- 
lection principle is set as follows: 

• Credit list : When the LB ID value has resulted in the best value 
found at that node of the tree (i.e., LB ID = LB best ), its calculation 
has shown to be useful, and therefore, it should be used for 
a number of iterations, regardless of its quality in the future 
iterations. Consequently, this lower bound (ID) is added to the 
credit list cred and hence will be calculated at other nodes of 
the search tree for at least nrC ID iterations, even if its value is 
outperformed by other lower bound calculations at that node. 
Hence, the lower bound will not be set tabu for at least nrC ID 
iterations, regardless of its performance. 

• Tabu list : When the LB ID was outperformed by another lower 
bound calculation from the set , its calculation has not con- 
tributed to the best found value ( LB best ) of that node in the 
tree, and its calculation was therefore only consuming unnec- 
essary computer time. Its calculation should be removed from 
the composite lower bound strategy for a number of iterations 
and the lower bound ID is therefore added to the tabu list tabu . 

The pseudocode of this algorithm is given in Algorithm 1 . The 

Algorithm 1  Dynamic lower bound selection. 

1: procedure DynamicSelection() 
2: CLB (set) → LB I D | I D ∈ set\ tabu 
3: LB best = max ∀ ID ∈ set\ tabu LB ID 
4: for ∀ ID ∈ set \ tabu do 
5: if ID / ∈ cred then 
6: if LB ID < LB best then 
7: Add ID to tabu list for the next 2 nrT ID iterations 
8: Set nrT ID + + 
9: else 

10: Add ID to cred list for the next nrC ID iterations 
11: Set nr C ID = min (nr C ID + 1 , nr C max ) 

12: Remove LBs from tabu and cred lists when # iterations are 
exceeded 

set of lower bounds incorporated in the set is defined by the 
static value of the list pointer as shown in Table 4 . For a given 
and known set , a call to this composite lower bound is denoted 
by CLB ( set ), and returns the values for all the lower bounds LB ID 
that belong to the set and that are not set tabu. At the start of 
the branch-and-bound tree, the tabu list tabu is empty and while 
credit list cred is not empty, since initially, all lower bounds of set 
are put in the credit list in the beginning for nrC init runs to as- 
sure that each lower bound is calculated in the beginning of the 
search. To that purpose, two counters are initialize as nrT ID = 0 and 
nr C ID = nr C init at the start of the branch-and-bound search. These 
counters are used to determine the number of iterations the lower 
bound ( ID ) stays in one of the lists, and the more often the lower 
bound is added to one of these lists, the longer they will stay for- 
bidden ( tabu ) or credited ( cred ). Once a lower bound is set tabu, 

Classification 
(Vanhoucke et al., 2016)

SolutionsUpdate 
(Vanhoucke and Coelho, 2018)

Exact algorithms 
(Coelho and Vanhoucke, 2018)

Hard instances 
(Coelho and Vanhoucke, 2020)

‣ Dynamic lower bound selection (13) 
‣ 3 branching schemes (SER, PAR, AST) 
‣ 3 branching orders (BLB, MTW, RAN) 
‣ Single-mode and multi-mode 
‣ Datasets: PSPLIB, RG30, RG300, MT(RC), MMLIB, Boctor 
‣ Composite search strategy
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Study 1. Project data analysis

Going to the core of hard resource-constrained project scheduling instances  
Computers and Operations Research (2020) 
doi: 10.1016/j.cor.2020.104976

Now it’s up to you!

Classification 
(Vanhoucke et al., 2016)

SolutionsUpdate 
(Vanhoucke and Coelho, 2018)

Exact algorithms 
(Coelho and Vanhoucke, 2018)

Hard instances 
(Coelho and Vanhoucke, 2020)

‣ Two procedures to change instances 
‣ Starting with 13,980 projects 
‣ Using +40 years of computer power 
‣ 623 new hard instances found

Set 1
641 instances

(178 + 463)

Size First Procedure
(PSPLIB, DC2, RG30 and 1kNetRes)

Hardness First Procedure
(RG30 and 1kNetRes)

Phase I & II
(restrictions/relaxations 1, 2)

5,610 instances
Phase III

1,315 instances
HardSet
623 instances
(361 + 127 + 135)

Set 2
422 instances

Phase I & II
(restrictions/relaxations 1, 2, 3)

6 x 641 instances

Experiment 1. 
173 months

Phase I & II
(restrictions/relaxations 1, 2)

8,370 instances

Experiment 2. 
110 months

Experiment 3. 
66 months

Experiment 4. 
183 months

 If (LB < BKS) Set 3
252 instances

Mario Vanhoucke

Study 2.  

Classroom experiments

Tom Servranckx
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Study 2. Classroom experiments

7 skills - 4 case studies (book picture + PSG)

Table 4 of paper + picture of London students
Figure 1 for showing the skills

Figures 5 to 7 for results? Not beautiful!

May 3, 2019, UCL School of Management (London, UK)
Programme Year Country #Groups #Students

1. MIMS 2016 Belgium 11 33
2. MGM 2017 Belgium 9 28
3. MSM 2017 UK 8 18
4. MIMS 2017 Belgium 11 33
5. MGM 2018 Belgium 6 20
6. MSM 2018 UK 17 68
7. MIMS 2018 Belgium 12 37
8. DDPM 2019 Belgium 10 31
9. MSM 2019 UK 19 81
Tot. 103 349

Table 4. Details of the dataset

25
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Study 2. Classroom experiments

7 skills - 4 case studies (book picture + PSG)

Table 4 of paper + picture of London students
Figure 1 for showing the skills

Figures 5 to 7 for results? Not beautiful!

May 3, 2019, UCL School of Management (London, UK)

PLAN 
activity - network - project 

Define activity estimates, construct 
a network and a schedule and 

analyse the chances to reach the 
project deadline 

PERT/CPM

RISK 
define - classify - analyse 

Risk = probability x impact 

Define risk classes and analyse the 
risk using Monte-Carlo simulations 

SCHEDULE RISK ANALYSIS

BUFFER 
cut - plan - buffer 

Remove activity protection and 
buffer the project 

Solve resource over-allocations and  
construct a resource schedule 

RESOURCE BUFFER MANAGEMENT

MONITOR 
collect - measure - predict 

Measure the project’s performance 
while it is in progress and predict 

the impact of unexpected events on 
the final outcome 

EARNED VALUE MANAGEMENT

CONTROL 
alarm - focus - shoot 

Generate automatic warning signals 
to detect problems during the 
project progress. Take actions 

whenever necessary! 

TOP/DOWN CONTROL
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Study 2. Classroom experiments

Hard skills 
(tools and techniques)

Soft skills 
(it’s all about people)

Understanding 
(comprehension of strengths and weaknesses of methods) 

Analysis 
(often called “analytical thinking”) 

Calculus 
(correctness of calculation (≈ traditional exam))

Communication 
(integrating different views and opinions) 

Criticality 
(making sound judgements and decisions) 

Holistic 
(integrating exercises, often called “organisation”) 

Creativity 
(out-of-the-box thinking and flexibility)

Mario Vanhoucke

Study 2. Classroom experiments

Planning
(PERT)

Risk 
analysis

(SRA)
Control
(EVM)

Simulation
(PSG)

Understanding

Analysis

Holistic

Analysis

Creativity

Holistic

Calculus

Calculus

Calculus

Criticality

Criticality

Communication

Communication

0.350 (0.000)

0.129 (0.131)

0.233 (0.014)

0.036 (0.392)

0.144 (0.088)0.052 (0.343)

Understanding

Analysis

Creativity

Holistic

Calculus

Criticality

Communication

Figure 6. Structural and measurement model with reliable indicators

35

Input data 
The project life cycle

Methodology 
Structural equation modelling

Programme Year Country #Groups #Students
1. MIMS 2016 Belgium 11 33
2. MGM 2017 Belgium 9 28
3. MSM 2017 UK 8 18
4. MIMS 2017 Belgium 11 33
5. MGM 2018 Belgium 6 20
6. MSM 2018 UK 17 68
7. MIMS 2018 Belgium 12 37
8. DDPM 2019 Belgium 10 31
9. MSM 2019 UK 19 81
Tot. 103 349

Table 4. Details of the dataset

25

Input data 
349 students
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Study 2. Classroom experiments

Experiment 1. Impact of skills on student performance 
• Both soft and hard skills impact the student performance 

• Hard skills are mainly important at the start and end of the project 
• Soft skills are important throughout the entire project

HARD

SOFT
HARD

SOFT
HARD

SOFT

HARD

SOFT
HARD

SOFT

Experiment 3. Importance of skills in project phases 
• Not all seven skills are equally important in each project phase 

• Always a combination of soft and hard skills in each project phase (Exp. 1) 
• Later phases require more skills (planning is easy, control is difficult) 
• The analytical skill the only skill that is always important

SKILLS SKILLS SKILLS SKILLS SKILLS

Analytical skill

SKILLS SKILLS SKILLS SKILLS SKILLS

Experiment 2. Improvement of skills 
• Both the hard and soft skills improve throughout the course module

Mario Vanhoucke

Study 3.  

Analytical project control

Annelies Martens Jie Song Xin Guan
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Study 3. Analytical project control

Setting tolerance limits to measure time/cost performance

         Project progress (time)

UCL

LCL
Danger! 
Take corrective actions

Opportunity! 
Re-baselining possible

Project control

Mario Vanhoucke

Study 3. Analytical project control

1995 

Statistical process control

≠
20 years later 

Statistical project control

Now 
(black turns into grey)

Now 
(long becomes short)

1995 
(student)

1995 
(teacher)
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Type I error  
"false positive" 

Probability of overreaction 

Type II error  
"false negative" 

Detection performance

Study 3. Analytical project control

Area under the curve  
“Arbitrary choices: AUC = 0.5“ 

Mario Vanhoucke
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Study 3. Analytical project control

Mario Vanhoucke

Project progress

UCL

LCL
Danger! 
Take corrective actions

Opportunity! 
Re-baselining possible

Project control charts

THIS SLIDE SHOULD BE 
UPDATED, REMOVED, OR I 

DON’T KNOW YET!!!

Project progress

UTL

LTL
Danger! 
Take corrective actions

Opportunity! 
Re-baselining possible

Project tolerance charts

Mario Vanhoucke

Project progress

UCL

LCL
Danger! 
Take corrective actions

Opportunity! 
Re-baselining possible

Project control charts

THIS SLIDE SHOULD BE 
UPDATED, REMOVED, OR I 

DON’T KNOW YET!!!

Project progress

UTL

LTL
Danger! 
Take corrective actions

Opportunity! 
Re-baselining possible

Project tolerance charts

Static project control 
Rules of thumb 
No data analysis

EASY
Statistical project control 

Data generation 
Statistical analysis (tolerance limits)

ADVANCED

DIFFICULT 
Statistical action thresholds 

(Monte Carlo simulations)

GOOD 
Data-driven decision making 

(data and intuition)

EASY 
Time buffers 

(linear action thresholds)

NOT SO GOOD 
Simple rules-of-thumb 

(better than gut feeling)

?
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Study 3. Analytical project control

Analytical project control 
No data generation or advanced statistics 

Better than the (oversimplified) rules of thumb

Static project control 
Rules of thumb 
No data analysis

Statistical project control 
Data generation 

Statistical analysis (tolerance limits)

EASY
ADVANCED

Mario Vanhoucke

Risk 
“activity sensitivity”

Cost 
“EVM data”

Resources 
“work content”

Allowable buffer consumption at each phase of the project

Time 
“1 day = 1 unit”

Time 
“non-linear accrue”

Everything’s under control 
(project is early or on-time)

Watch out! 
(project delays expected)

Action time! 
(project likely to be late)

Real project problems 
(project is no longer under control)

Buffer control methods
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Analytical project control ≈ statistical project control 
• Control charts (control limits): No simulations necessary! 
• Project progress (warning signals): No advanced statistics necessary! 
• Similar results (only slightly less reliable, not worth mentioning) 

A buffer control method for top-down project control 
European Journal of Operational Research (2017) 
doi: 10.1016/j.ejor.2017.03.034

The impact of applying effort to reduce activity variability on the project time and cost performance 
European Journal of Operational Research (2019) 
doi: 10.1016/j.ejor.2019.03.020

An empirical validation of the performance of project control tolerance limits 
Automation in Construction (2018) 
doi: 10.1016/j.cie.2017.05.020

The integration of constrained resources into top-down project control 
Computers and Industrial Engineering (2017) 
doi: 10.1016/j.autcon.2018.01.002

Analytical buffers 
(Martens and Vanhoucke, 2017a,b)

Corrective actions 
(Martens and Vanhoucke, 2019)

Empirical validation 
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Analytical project control ≈ statistical project control 
• Control charts (control limits): No simulations necessary! 
• Project progress (warning signals): No advanced statistics necessary! 
• Similar results (only slightly less reliable, not worth mentioning) 

APC works better when realistic data is available (e.g. risk data)

Tolerance limits for project control: An overview of different approaches 
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Study 4. Data calibration

“The predictive value of Monte Carlo simulations lends itself to a diverse field of business 
applications, ranging from risk management to financial planning to economic modelling. 
Monte Carlo simulations can be used in decision making to provide potential solutions to 

complex problems.”  

(Quote from www.referenceforbusiness.com)

Full factorial design 
(span the full range of complexity)

Very case specific 
(realistic for my projects, I don’t care about others)

Data calibration
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PLAN: Duration estimates 
REAL: Real durations

Project data

Clusters of activities of project with known distribution  
(with known average and standard deviation)

The simple idea of data calibration

Data calibration
Schedule Reality

Input Calibration Output

Statistical testing Probability distributions

H0  
durations follow predefined distribution

Option 1.  
Curve fitting

‣ human errors 
‣ human expertise 
‣ Automatic clustering

Option 2.  
Calibration
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Study 4. Data calibration

Rounding (removing ties)
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Remove % of tardy points
Hypothesis test 3

Hypothesis test 1
H0: dij / dij follows a lognormal distribution

Remove on-time points
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remaining project 
data in database

Accept if p ≥ α

Remove 
project from 

database

Reject if p < α

Reject if p < α
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Reject if p < α

Accept if p ≥ α

Accept if p ≥ α

Accept if p ≥ α

Add 
project data

1. Assume a probability distribution 
2. Remove data with human errors 
3. Fit remaining data

Calibrations works! 
(24 projects)

data can’t replace human intuition  
(97 projects)

human intuition can’t replace data  
(125 projects)

Data calibration 
(Trietsch et al, 2012)

Empirical validation 
(Colin and Vanhoucke, 2016)

Human expertise 
(Vanhoucke and Batselier, 2019a)

Statistical partitioning 
(Vanhoucke and Batselier, 2019b)
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Table 3: Results for the partitioning heuristic with managerial partitioning

Partitioning setting

(rounding - selection - stopping)
(1-0-1) (1-1-1)

PD (x4) PD (x5) WP RP PD (x4) PD (x5) WP RP

(a) # projects 83 83 53 21 83 83 53 21
avg. # activities 61 61 72 42 61 61 72 42
tot. # activities 5,068 5,068 3,796 887 5,068 5,068 3,796 887

(b1) # partitions (human) 232 213 426 65 232 213 426 65
# partitions (avg/p) 2.8 2.6 8.0 3.1 2.8 2.6 8.0 3.1
# partitions (max) 4 4 26* 6 4 4 26* 6
1 partition [%] 4 6 36 0 4 6 36 0
2 partitions [%] 32 40 45 24 32 40 45 24
3 partitions [%] 45 46 8 52 45 46 8 52
4 partitions [%] 19 8 7 19 19 8 7 19
5 partitions [%] 0 0 2 0 0 0 2 0
6 partitions [%] 0 0 2 5 0 0 2 5

(b2) # subpartitions (statistical) - - - - 423 399 631 117
# subpartitions (avg/p) - - - - 5.1 4.8 11.9 5.6
# subpartitions (max) - - - - 4 4 5 4
1 subpartition [%] - - - - 40 37 59 34
2 subpartitions [%] - - - - 40 41 35 54
3 subpartitions [%] - - - - 18 19 4 11
4 subpartitions [%] - - - - 2 3 1 1
5 subpartitions [%] - - - - 0 0 1 0

(c) tot. # partitioning steps 2,150 2,246 835 348 689 751 555 182
/project 26 27 16 17 8 9 10 9

(d) % act. partition L 79 78 90 77 - - - -
% act. partition P 21 22 10 23 - - - -

(f) avg. SEY 0.161 0.171 0.196 0.101 0.108 0.130 0.146 0.088
avg. p 0.614 0.589 0.658 0.741 0.774 0.756 0.783 0.811
accepted (sub)partitions [%] 88 85 92 95 97 94 97 97

* For partitioning criterion WP, a di↵erent scale applies for the next six rows: 1 / 2 / 3 / 4 / 5 / 6 partition(s)
should be regarded as 1-5 / 6-10 / 11-15 / 16-20 / 21-25 / 26-30 partitions, respectively.

since this implies an average of only 6 activities per subpartition. However, this is not
a problem when one of the other managerial criteria are applied, with an average of
about 5 subpartitions per project. The main reason is that project managers apparently
define way too much WPs, on average 8 per project, with an excessive maximum of 26
WPs for one project. This issue could be resolved by stimulating project managers to
limit the number of identified WPs through consideration of higher-level classification
criteria.

(c) # partitioning steps: The number of partitioning steps do not fundamentally dif-
fer between the two tables and the table still shows that the setting with selection = 1
requires significantly less partitioning steps than the setting with selection = 0. Further-
more, the introduction of managerial partitioning does not seem to increase the average
number of partitioning steps (this remains about 9 (between 8 and 10) for (1-1-1) like in
Table 2), which means that the computational e↵ort to partition the data remains just

28

Study 4. Data calibration

Data calibration ≈ curve fitting + activity clusters + human errors 
• Parkinson effect is considerably more substantial than the rounding effect 
• Small number of clusters in project data found: Partitioning works! 
• Human expertise greatly improves the calibration method 
• Human and statistical calibration performs best (97% accepted partitions)

Data calibration 
(Trietsch et al, 2012)

Empirical validation 
(Colin and Vanhoucke, 2016)

Human expertise 
(Vanhoucke and Batselier, 2019a)

Statistical partitioning 
(Vanhoucke and Batselier, 2019b)
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Study 3. Analytical project control
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Operations Research & Scheduling Research Group

The future of my team
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Extending the dataset 
from 50 to 125 publicly 
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Comparison with Statistical Project Control methods

Fit realistic probability distributions using a mix of 
human partitioning and statistical partitioning
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empirical project data since 2015

2. Learning 

Teaching Project Management 
course modules at business Schools 
and companies since 2002

3. Control 
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4. Calibration 
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published in 2016

1. Data 
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2. Learning 

Follow-up study with student 
experiments

3. Control 

Currently 3 PhD students started 
on the next phase of project control

4. Calibration 

Data calibration in practice (big 
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“Trust me” 
Who needs data when you have opinions? 
Solve problems when they occur!

“Automatic control” 
Who needs project managers when you have algorithms? 
Algorithms will replace people

Current research projects 
Understanding data before going to AI 
Bridging the gap between the youngsters and the elderly

The future of project data

Mario Vanhoucke

www.or-as.be/books

The future of now (the next couple of minutes or so)

www.or-as.be/research/database

Download presentation slides
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Gone but not forgotten 
Dr. Salah Elmaghraby (1927-2016)
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