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Abstract

This appendix contains 3 appendices A, B and C mentioned in the paper “A predic-
tion model for ranking branch-and-bound procedures for the resource-constrained project
scheduling problem” published in the European Journal of Operational Research.
(doi: 10.1016/j.ejor.2022.08.042)

1 Appendix A: Technical appendix

1.1 Matching procedures in the CLB framework

The branch-and-bound procedure using a composite lower bound strategy (further abbreviated as
the CLB) presented in Coelho and Vanhoucke (2018) combines most of the well-performing com-
ponents proposed in the academic literature. Figure 1 graphically displays the four components
of the CLB, and this abbreviation will be further used to match the existing branch-and-bound
procedures into the CLB framework. Among them, three search strategies are used, namely
upper bound strategy (U), minimum lower bound strategy (L), or dual bound strategy (D).
Three branching schemes the activity start time branching (A), parallel branching (P), or serial
branching (S) are considered. Moreover, four versions of the branching orders are implemented,
i.e. the best lower bound (B), minimal time window (M), random branching order (R), or the
activity ID order (A). As explained earlier in the paper, various composite lower bound strategies
(CLB) are introduced, i.e. CLB0 (0), CLB4 (4), CLB8 (8), or CLB12 (12).

 

Search strategy -- Branching scheme -- Branching order -- Composite lower bounds 

(U, L or D)         (A, P or S)       (B, M, R or A)       (0, 4, 8 or 12) 

 

 Figure 1: The four components of the CLB procedure of Coelho and Vanhoucke (2018)
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1



Table A: Literature review on branch-and-bound
References Tree strategy Search strategy Branching scheme Branching order (Composite) lower bounds

Depth-
first

Best-
first

Breadth-
first

Hybrid U L D A P S FR2DP(2) B M R A cp rc(3) cc cs pm0 pm1 pm2 np0 np1 np2 ip0 ip1 pr ct tp LB2(4)

A Coelho and Vanhoucke (2018) X X X X X X X X X X X X X X X X X X X X X X X X X X
Klein and Scholl (1999) - - - - - - - - - - - - - - - X X X X X X X X X X X X X X

B Patterson and Huber (1974) X X X X X - - - - X X
Stinson et al. (1978) X X X(1)c X X X X
Talbot and Patterson (1978) X X X X X
Christofides et al. (1987) X X X(1)c X X X
Bell and Park (1990) X X X(1)c X(1)d X
Demeulemeester and Herroelen (1992) X X X X X X
Mingozzi et al. (1998) X X X X(1)f X X
Demeulemeester and Herroelen (1997) X X X X X X X X
Brucker et al. (1998) X X X X X X
Nazareth et al. (1999) X X X X X X
Dorndorf et al. (2000) X(1)a X X(1)b X(1)e X
Sprecher (2000) X X X X X X

C Current work X X X X X X X X X
X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X

References Match the procedures with our configurations Comments

Abbreviation(5) # Configura-
tion

A Coelho and Vanhoucke (2018) [U,L] × [A,P,S] × [B,A] ×
[0,4,8,12]

48

Klein and Scholl (1999) - - This is the list of lower bounds implemented in our composite B&B.

B Patterson and Huber (1974) UAA0, LAA0 2 This procedure is solved by a zero-one formulation.
The “dual bound” search strategy is not used in CLB.
Since no branching order is given, the activity ID order is se-
lected.

Stinson et al. (1978) LPB0, LPB4* 2 The “ best-first” tree strategy with upper bound strategy (U)
is replaced by the “depth-first” tree strategy with minimum
lower bound strategy (L). (cf. Section 1.2)

Talbot and Patterson (1978) UAA0 1
Christofides et al. (1987) UPA0, UPA4* 2
Bell and Park (1990) LPB0 1 The best-first tree strategy with upper bound strategy is re-

placed by the depth-first tree strategy with minimum lower
bound strategy. (cf. Section 1.2)

Demeulemeester and Herroelen (1992) UPA0, UPA4* 2
Mingozzi et al. (1998) UPA0, UPA4* 2
Demeulemeester and Herroelen (1997) UPA0, UPA4* 2 The “best-first” and “breadth-first” tree strategies are not used

in CLB.
Brucker et al. (1998) - 0 This approach cannot be matched to the CLB configurations,

since FR2DP and LB2 are not in the CLB framework.

Nazareth et al. (1999) LPA0 1 The “breadth-first” tree strategy is not used in our study.
The “best-first” tree strategy with U is replaced by the “depth-
first” tree strategy with L. (cf. Section 1.2)

Dorndorf et al. (2000) - 0 This approach differs too much from the CLB configurations
that a match could not be made.

Sprecher (2000) USA0, USA4* 2

C Current work 2 times twelve configurations
with LB = CLB0 = cp

12 For calculating LB: [L,U] × [A,P,S] × [B,A] × [cp]
For calculating UB: [L,U] × [A,P,S] × [B,A] × [cp]

2 times twelve configurations
with LB = CLB4

12 For calculating LB: [L,U] × [A,P,S] × [B,A] × [CLB4]
For calculating UB: [L,U] × [A,P,S] × [B,A] × [CLB4]

2 times twelve configurations
with LB = CLB8

12 For calculating LB: [L,U] × [A,P,S] × [B,A] × [CLB8]
For calculating UB: [L,U] × [A,P,S] × [B,A] × [CLB8]

2 times twelve configurations
with LB = CLB12

12 For calculating LB: [L,U] × [A,P,S] × [B,A] × [CLB12]
For calculating UB: [L,U] × [A,P,S] × [B,A] × [CLB12]

(1) A slightly adapted version is used (details are given in column “Comments”).
- (a) Depth-first: This depth-first tree strategy is implemented as a bi-directional search.
- (b) Activity start time (A): While the other activity start time schemes select nodes with the earliest possible start this, this procedure generates one child node
by the earliest start time, and the second node selects an activity to be delayed.
- (c) Parallel branching (P): The parallel branching scheme used in these studies don’t rely on minimal delaying alternatives.
- (d) Best lower bound (B): In case the lower bounds are the same, this procedure also uses the highest resource violating time as a tie-breaker.
- (e) Minimal time window (M): This procedure selects the nodes according to the earliest start time (and uses the minimal time window as a tie-breaker).
- (f) Activity ID order (A): This procedure select the node with the highest number of scheduled activities (instead of the lowest activity ID).
(2) FR2DP: The procedure first checks all possible activity pairs to find the pairs with flexibility relation (FR) and then branches on the selected pairs by transforming
this flexibility relation either into a disjunction (D) (by introducing the resource constraint) or by placing them in parallel (P).
(3) The resource capacity lower bound rc is only used in a pre-processing phase, and not as a lower bound calculation during the search.
(4) The LB2 lower bound is proposed in Mingozzi et al. (1998) and is not used in other branch-and-bound procedures.
(5) In column “Abbreviation” , * means that not all lower bounds are used in a specific configuration.

Table A displays all the existing branch-and-bound procedures from the literature, classified into
three main row blocks. The rows “A” contain the CLB procedure as well as the lower bounds
study (Klein and Scholl, 1999) using as a composite lower bound strategy in the CLB framework.
Combining all possible components of the CLB procedure results in 48 different configurations.
Each row in “B” contains an existing branch-and-bound procedure which will be matched to one
or more of the 48 CLB configurations. Finally, the rows in “C” contain more details about the
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48 strategies we used in our experiments. The top part of the table shows the similarity of each
branch-and-bound procedure with the four components of our study (each time a X is shown,
the original procedure is mapped to one or more of our components). The lower part of the
table provides additional information about the choices we have made when the similarity was
not crystal clear. In this table, two branching orders that are not used in our current study are
also given: Minimal time window (M) and Random branching order (R). More details can be
found in Coelho and Vanhoucke (2018).

Matching existing branch-and-bound procedures into the CLB framework requires some adapta-
tions and decisions to make, which will briefly be discussed along the following lines.

• Tree strategy: The third column of the table displays the tree strategy of the procedure
which can be either depth-first, best-first, breadth-first, or a hybrid approach. Since only
the depth-first tree strategy has been implemented in the CLB procedure, some procedures
cannot be matched into the CLB framework. However, for three of the four procedures that
rely on a best-first tree strategy, the tree strategy has been transformed into a depth-first
tree strategy to fit into the CLB framework, and this will be explained in Section 1.2.

• Composite lower bound strategy: The last component of Figure 1 refers to the compo-
sition of lower bounds and can be either 1, 4, 8 or 12. The rows in C show the composition
of the four composite lower bound strategies and are copied from the original study of
Coelho and Vanhoucke (2018). Most existing branch-and-bound procedures only use the
critical-path based lower bound, which corresponds to CLB0, except for a few extended
procedures. These extended procedures make use of a wider set of lower bounds and resem-
ble the CLB4 strategy, but nevertheless do not incorporate all lower bounds of the CLB4
strategy. For this reason, we added an asterisk in the column “Abbreviation” to highlight
that it resembles, but is not identical to the CLB4 approach.

• Adaptations: Not every branch-and-bound procedure perfectly fits into the CLB frame-
work due to little differences between the original branch-and-bound procedure and the
specific CLB implementation. Each time the superscript (1) is used in the body of the
table, a footnote is displayed to show that the component is slightly different from the
components used in the CLB approach.

The column “Abbreviation” finally shows the match of each branch-and-bound procedure with
the CLB framework using the components of Figure 1 and, whenever necessary, some comments
are added to clarify some choices we have made.

1.2 Depth-first and best-first

We explained earlier that the best-first tree strategy is not implemented in the CLB procedure,
and is therefore replaced by the depth-first tree strategy for existing procedures. This section
illustrates why “best-first tree strategy with upper bound strategy (U)” can be approximated
by the “depth-first tree strategy with minimum lower bound strategy (L)” using an illustrative
example branch-and-bound tree.

It should not be very difficult to see the similarity, and both approaches will be illustrated on an
example tree of Figure 2.

The depth-first tree strategy (with minimum lower bound strategy) always expands the nodes on
the deepest un-expanded level first. In case multiple nodes at the same level, the node with the
lowest LB is selected first. The minimum lower bound search strategy assumes that an artificial
upper bound value UB = m is known, and iteratively increases m until a feasible and hence
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optimal solution is found. More specifically, in a first minimum lower bound strategy run with
UB = m, only nodes with LB that are not greater than m can be expanded. In the next run,
the UB is set to m+ 1, the procedure continues the search from this updated UB and identifies
whether the node can be expanded by examining its LB. Consequently, the order of the nodes
expanded in the complete search will be equal to A, B, C, I, J, O. Details of this order can be
found in Table B in which it is assumed that the artificial UB = 10 and the search continues
until UB = 14.

For the best-first tree strategy (with upper bound strategy), the nodes are expanded the lowest
LB first, and an ordered list of nodes (OPEN) is created which consists of nodes that have been
identified but not yet examined. The order of the node in the OPEN list is ranked by their
LB values, i.e. the node with the lowest LB is placed the first. A second list (CLOSED) is also
dynamically created along the search and consists of nodes which have been expanded. The
construction of the OPEN and CLOSED lists is given in Table C. The table shows that the
order of the CLOSED list is either A, B, I, J, C, O (in case node “C” is expanded) or A, B, I,
J, O (in case node “O” is expanded), which both resemble the node order of the depth-first tree
strategy.

A

B

C F

D E G H

I

J O

L M N

LB 10

LB 11 LB 12

LB 14 LB 15 LB 13 LB 14

UB 14

UB 16 UB 15 UB 17 UB 18 UB 15 UB 16 UB 19

Figure 2: An example tree
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Table B: The depth-first with minimum lower bound strategy (L)
The process for the depth-first with L

Search Artificial UB The list of the
expanded nodes

Explanation

Search 1 (Initial) 10 A For this first search, assume that there exists a UB = LB, in this case, UB = 10,
and the process terminates at node “A”. Since this tree strategy expands the deepest
unexpanded node first, node “B” is newly identified, while the LB of node “B” is
greater than UB, it will not be expanded further. Similarly, nodes “C”, “F” and “I”
will not be expanded. After this search, no feasible solution is found, the artificial
UB is increased by a one-time value (i.e. 1) and the search starts again. Note that
in other problems, the time unit can be a different scale, which results in different
artificial UBs.

Search 2 =10+1=11 A, B After expanding “A”, node “B” is newly identified, and its LB (11) is examined to be
not greater than UB, this node is expanded. While the LB of node “C” is examined
to be greater than UB, this node will not be expanded further. Similarly, nodes “F”
and “I” will not be expanded. Since no feasible solution is found, the search starts
again by increasing the UB.

Search 3 =11+1=12 A, B, I After expanding “A” and “B”, node “C” is newly identified, and its LB (14) is exam-
ined to be greater than UB, this node will not be expanded. Similarly, nodes “F” will
not be expanded. While the LB (12) of node “I” is examined to be not greater than
UB, this node is expanded further. The LBs of nodes “J” and “O” are examined in
turn to be greater than UB, they will not be expanded. After this search, no feasible
solution is found, and the search starts again.

Search 4 =12+1=13 A, B, I, J After expanding “A”, “B”, the LB (14) of node “C” is examined to be greater than
UB, this node will not be expanded. Similarly, nodes “F” will not be expanded.
After expanding “I”, the LB (13) of node “J” is examined to be not greater than UB,
it will be expanded. While nodes “O” will not be expanded. The search starts again.

Search 5 =13+1=14 A, B, C, I, J, O After expanding “A” and “B”, the LB of “C” is examined to be not greater than UB,
this node is expanded. Then, nodes “D” and “E” are examined and correspond to
feasible solutions, and their UBs are worse than 14, which is not acceptable. Then,
node “F” is examined, and its LB is greater than UB, it will not be expanded.
After expanding “I”, the LB (13) node “J” is examined to be smaller than UB, it
will be expanded. Then nodes “L”, “M” and “N” are examined, Similarly, their UBs
are also worse than 14, which is not acceptable. After that, node “O” is examined,
and its LB equals UB, this feasible solution is also an optimal solution. The search
process terminates.

Table C: The best-first with upper bound strategy (U)
The process for the best-first with U

Expansion CLOSED OPEN Explanation

Initial Empty A Expansion starts from the single node “A” in the OPEN.
Expansion 1 A B, I After expanding “A”, it is removed from “OPEN” to “CLOSED”. Then, its children

nodes “B” and “I” are newly identified and added to “OPEN”. Since “B” has the
smallest LB in all nodes in the “OPEN”, it is the first in the “OPEN” and will be
further expanded.

Expansion 2 A, B I, C, F After expanding “B”, it is removed from “OPEN” to “CLOSED”. Then, its children
nodes “C” and “F” are newly identified and added to “OPEN”. Since “I” has the
smallest LB in all nodes in the “OPEN”, it is the first in the “OPEN” and will be
further expanded.

Expansion 3 A, B, I J, C, O, F After expanding “I”, it is removed from “OPEN” to “CLOSED”. Then, its children
nodes “J” and “O” are newly identified and added to “OPEN”. Since “J” has the
smallest LB, it is first in the “OPEN” and will be further expanded.

Expansion 4 A, B, I,
J

C, O, F, L, M,
N

After expanding “J”, it is removed from “OPEN” to “CLOSED”. Then, its children
nodes “L”, “M” and “N” are newly identified and added to “OPEN”. Since both nodes
“C” and “O” have the smallest LB, either “C” or “O” will be further expanded.

If “C” is
expanded

Expansion
5C

A, B, I,
J, C

O, F, L, E, D,
M, N

After expanding “C”, it is removed from “OPEN” to “CLOSED”. Then, its children
nodes “D” and “E” are newly identified and added to “OPEN”. Since the “O” has
the smallest LB, it is the first in the “OPEN” and will be further expanded.

Expansion 6 A, B, I,
J, C, O

F, L, E, D, M,
N

After expanding “O”, it is removed from “OPEN” to “CLOSED”, and this node is a
leaf node with no children. Since the LB of “O” is equal to UB, this feasible solution
is also optimal. The search process terminates.

If “O” is
expanded

Expansion
5O

A, B, I,
J, O

C, L, M, N After expanding “O”, it is removed from “OPEN” to “CLOSED”. This node is a leaf
node with no children. Since the LB of “O” is equal to UB, this feasible solution is
optimal. The search process terminates.
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2 Appendix B: 48 possible combinations of all components

Table A: Correspondence between configurations and various combinations of components.

Abbreviation
Search strategy Branching scheme Branching order Composite lower bound

L/U A/P/S A/B CLB0 (0)/CLB4 (4)/CLB8 (8)/CLB12 (12)

UAB0 U A B 0
LAB0 L A B 0
USB0 U S B 0
LSB0 L S B 0
UPB0 U P B 0
LPB0 L P B 0
UAB4 U A B 4
LAB4 L A B 4
USB4 U S B 4
LSB4 L S B 4
UPB4 U P B 4
LPB4 L P B 4
UAB8 U A B 8
LAB8 L A B 8
USB8 U S B 8
LSB8 L S B 8
UPB8 U P B 8
LPB8 L P B 8
UAB12 U A B 12
LAB12 L A B 12
USB12 U S B 12
LSB12 L S B 12
UPB12 U P B 12
LPB12 L P B 12
UAA0 U A A 0
LAA0 L A A 0
USA0 U S A 0
LSA0 L S A 0
UPA0 U P A 0
LPA0 L P A 0
UAA4 U A A 4
LAA4 L A A 4
USA4 U S A 4
LSA4 L S A 4
UPA4 U P A 4
LPA4 L P A 4
UAA8 U A A 8
LAA8 L A A 8
USA8 U S A 8
LSA8 L S A 8
UPA8 U P A 8
LPA8 L P A 8
UAA12 U A A 12
LAA12 L A A 12
USA12 U S A 12
LSA12 L S A 12
UPA12 U P A 12
LPA12 L P A 12

3 Appendix C: Lehmer Code

The following is an example, borrowed from Li et al. (2017) to illustrate the process of the
Lehmer code. A permutation σxi

= (σ(yi1), · · · , σ(yiQ)) ∈ SQ may be uniquely represented via

its Lehmer code, i.e. a word of the form cσxi
∈ CQ , {0}× J0, 1K× J0, 2K×· · ·× J0, Q− 1K, where

for any configuration yij (j = 1,..., Q).

cσxi
(yij) = #{yik : yik<yij , σxi(yik)>σxi(yij)}

The coordinate cσxi
(yij) is thus the number of elements yik with index smaller than yij that are

ranked higher than yij in the permutation σxi
. and for any finite set C, #C denotes its cardi-

nality. By default, cσxi
(yi1) = 0 and is typically omitted. Consider the following example, which
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shows the canonical set of items (configurations) e, a permutation σxi , and the corresponding
Lehmer code cσxi

:

e (index) yi1(1) yi2 (2) yi3 (3) yi4 (4) yi5 (5) yi6 (6) yi7 (7) yi8 (8) yi9 (9)
σxi 2 1 4 5 7 3 6 9 8
cσxi

0 1 0 0 0 3 1 0 1

In this example, the total number of elements is 9. For instance, the 6th digit of the Lehmer
code cσxi

= 3 because in the permutation σxi
, there are 3 elements (4, 5, and 7) that appear

to the left of the 6th element (i.e. with a smaller index number) but are ranked higher than
it. Moreover, its coordinates are decoupled, for this reason, the decoding step it trivial. More
details can be found in Li et al. (2017).
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