
Appendix A Calculating principal components

In the very early years of the 20th century, PCA was developed by Pearson [1]. Ever since,

PCA has been a popular procedure to reduce the dimensionality of a variable space. For a

full coverage on the basics of linear algebra, which is fundamental to PCA but lies outside

the scope of this paper, the reader is referred to Jolliffe [2]. In this appendix, we will only

introduce the properties of PCA using a graphical representation and give a brief overview of

the matrix calculus that is required.

PCA assumes that the true rank of a matrix of observations X is less than the number

of observations which are made. Consequently, it conjectures that the observations can be

projected onto a new set of coordinate axes, thereby removing redundancy and noise from

the system. The PCA decomposition method first calculates the principal components of

the observation space, i.e. the directions that will make up the new coordinate axes. These

principal components are often also named the latent variables, since they represent the

underlying (unobservable) factors really influencing the system dynamics. Historically, the

development of the Non Iterative Partial Least Squares (NIPALS) algorithm meant the real

breakthrough for PCA. Consider a (n× P ) matrix X that is a collection of n measurements

for a P -variate randomly distributed variable x. The first principal component of x is defined

as the vector of coefficients p1 for which the linear combination t1 = xp1 captures as much as

possible of the variance contained in X, subject to |p1| = 1. The second principal component

is then the vector of coefficients p2 for which the linear combination t2 = xp2 contains as

much of the variance from X that is not captured within t1. Additional principal components

up to P are similarly defined. Some of the literature on the NIPALS algorithm is worth a read

as it can provide insight into the characteristics of PCA [3, 4]. In addition, Shlens [5] gives

an intuitive explanation of how PCA is used to reduce the dimension of the problem.

In more recent work, PCA is always performed using the computationally more efficient

singular value decomposition (SVD, [6]) of X. The SVD algorithm decomposes X into three

matrices as depicted in equation (A1): a (n×P ) matrix U, a (P ×P ) diagonal matrix L and

a (P × P ) matrix A.

X = ULAT (A1)
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The matrix U, whose columns contain the left singular vectors of X, is multiplied with the

diagonal matrix L, containing the singular values of X, to form the matrix of scores T. The

matrix A contains the right singular vectors of X and is equal to the matrix of loadings P.

The PCA decomposition, illustrated in figure A1, can then be written as

X = TPT . (A2)

The singular values on the diagonal of L are equal to the square roots of the eigenvalues

(
√

l2i ,∀i ∈ {1, . . . , P}) of XTX. Using these square roots, we can find the standard deviation

of the ith principal component sti as follows:

sti =

√
l2i

n− 1
(A3)

The score-loading nomenclature is very common in PCA literature and is therefore adopted

here. The matrix of loadings P =
[
p1 p2 . . . pP

]
can be seen as a (1 × P ) collection of

(P ×1) vectors of coefficients for the linear combination ti = xpi that defines the ith principal

component. A related term “matrix of rotations” expresses the geometrical interpretation of

the loadings, as they represent a new coordinate space onto which x is projected. The (n×P )

matrix of scores T can then be interpreted as the values in the new coordinate space for the

collection of n measurements of x. We illustrate this geometrical interpretation of PCA using

a trivial example in appendix B. The reader is referred to [4, 5] for further illustrations.

Such a geometrical interpretation can be particularly helpful to obtain insights in the relative

importance of the different principal components, expressed by their standard deviations. We

will now explore this further, while discussing whether all principal components should be

retained in the analysis or not.

If all of the P principal components are retained for a further analysis of the data, an obser-

vation for the P -variate vector of observations x can be reconstructed from its (1×P ) vector

of scores t, as demonstrated in equation (A4) and depicted in figure A2.

x = tPT

=
P∑

i=1

tipi (A4)

However, since PCA is used to find a solution to the problems associated with the multivariate

nature of project data, it will try to reduce the dimensionality of the problem in a structured
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Figure A1: Principal Component Analysis as a data decomposition method ([7]).
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Figure A2: Principal Component Analysis interpretation for a vector of observations

manner, without losing valuable information. We assume that an integer k (0 < k ≤ P )

exists such that the last P − k principal components do not represent valuable information

for our system. By definition, each principal component will only explain a very small part

of the original variation contained in X. Later in this paper we will test different choices for

k principal components to retain in the analysis. For now we state that if only k principal

components are retained, the original observation for the P -variate vector of observations x

can be estimated as x̂ from its (1 × k) vector of scores t, as depicted in equation (A5) and

figure A3.

x̂ = tPT

=

k∑

i=1

tipi (A5)

The matrix form for the collection of n observations for x in X is presented in equation (A6),

where Tk is the (n × k) matrix of scores, Pk is the (P × k) matrix of loadings when only k

principal components are retained and Ek is the (n× P ) error matrix.
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Figure A3: Interpretation for the PCA estimate of a vector of observations

X =

k∑

i=1

TkPT
k + Ek (A6)

Ek can be seen as the collection of error vectors e, each corresponding to the vector x when

only k principal components are retained:

e = x− x̂

=
P∑

i=k+1

tipi (A7)
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